[link] Batz, K., Katoen, J. P., Randone, F., & Winkler, T. (2025). Foundations for Deductive Verification of Continuous Probabilistic Programs: From Lebesgue to Riemann and Back. In Proceedings of the ACM on Programming Languages, 9(OOPSLA1), 421-448.
[link] Doz, R., Randone, F., Medvet, E., & Bortolussi, L. (2025, July). Evolutionary Synthesis of Probabilistic Programs. In Proceedings of the Genetic and Evolutionary Computation Conference (pp. 999-1007).
[link] Rønneberg, R. C., Randone, F., Pardo, R., & Wąsowski, A. (2025). Quantifying Privacy Risk with Gaussian Mixtures: RC Rønneberg, F. Randone, R. Pardo, A. Wąsowski. Software and Systems Modeling, 1-22.
[link] Randone, F., Bortolussi, L., Incerto, E., & Tribastone, M. (2024). Inference of Probabilistic Programs with Moment-Matching Gaussian Mixtures. Proceedings of the ACM on Programming Languages, 8(POPL), 1882-1912.
[link] Randone, F., Doz, R., Cairoli, F., & Bortolussi, L. (2024, October). Towards a probabilistic programming approach to analyse collective adaptive systems. In International Symposium on Leveraging Applications of Formal Methods (pp. 168-185). Cham: Springer Nature Switzerland.
[link] Schröer, P., Randone, F., Pardo, R., & Wa̧sowski, A. (2024). Symbolic Quantitative Information Flow for Probabilistic Programs. In Principles of Verification: Cycling the Probabilistic Landscape: Essays Dedicated to Joost-Pieter Katoen on the Occasion of His 60th Birthday, Part I (pp. 128-154). Cham: Springer Nature Switzerland.
[link] Randone, F., Bortolussi, L., & Tribastone, M. (2022, September). Jump Longer to Jump Less: Improving Dynamic Boundary Projection with h-Scaling. In International Conference on Quantitative Evaluation of Systems (pp. 150-170). Cham: Springer International Publishing.
[link] Randone, F., Bortolussi, L., & Tribastone, M. (2021). Refining mean-field approximations by dynamic state truncation. Proceedings of the ACM on Measurement and Analysis of Computing Systems, 5(2), 1-30.
[link] Virgolin, M., De Lorenzo, A., Randone, F., Medvet, E., & Wahde, M. (2021, July). Model learning with personalized interpretability estimation (ML-PIE). In Proceedings of the Genetic and Evolutionary Computation Conference Companion (pp. 1355-1364).
[link] Virgolin, M., De Lorenzo, A., Medvet, E., & Randone, F. (2020). Learning a formula of interpretability to learn interpretable formulas. In Parallel Problem Solving from Nature–PPSN XVI: 16th International Conference, PPSN 2020, Leiden, The Netherlands, September 5-9, 2020, Proceedings, Part II 16 (pp. 79-93). Springer International Publishing.